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Abstract. Geoelectric time series (TS) have long been stud-
ied for their potential for probabilistic earthquake forecast-
ing, and a recent model (GEMSTIP) directly used the skew-
ness and kurtosis of geoelectric TS to provide times of in-
creased probability (TIPs) for earthquakes for several months
in the future. We followed up on this work by applying the
hidden Markov model (HMM) to the correlation, variance,
skewness, and kurtosis TSs to identify two hidden states
(HSs) with different distributions of these statistical indexes.
More importantly, we tested whether these HSs could sepa-
rate time periods into times of higher/lower earthquake prob-
abilities. Using 0.5 Hz geoelectric TS data from 20 stations
across Taiwan over 7 years, we first computed the statistical
index TSs and then applied the Baum–Welch algorithm with
multiple random initializations to obtain a well-converged
HMM and its HS TS for each station. We then divided the
map of Taiwan into a 16-by-16 grid map and quantified the
forecasting skill, i.e., how well the HS TS could separate
times of higher/lower earthquake probabilities in each cell
in terms of a discrimination power measure that we defined.
Next, we compare the discrimination power of empirical HS
TSs against those of 400 simulated HS TSs and then orga-
nized the statistical significance values from this cellular-
level hypothesis testing of the forecasting skill obtained into
grid maps of discrimination reliability. Having found such
significance values to be high for many grid cells for all sta-
tions, we proceeded with a statistical hypothesis test of the
forecasting skill at the global level to find high statistical sig-

nificance across large parts of the hyperparameter spaces of
most stations. We therefore concluded that geoelectric TSs
indeed contain earthquake-related information and the HMM
approach is capable of extracting this information for earth-
quake forecasting.

1 Introduction

Earthquakes (EQs) are one of the most destructive natural
hazards that can befall us, with the potential to take many
human lives and cause serious damage to economies and
environments. It is imperative for us to work towards bet-
ter forecasting/prediction capabilities against EQs, to inform
pre-EQ evacuation and post-EQ relief, as well as expediting
critical reinforcement works for selected buildings and in-
frastructures. To achieve this goal, the scientific community
has done much work discovering precursors and models that
are useful for the forecasting/prediction of EQs.

First, let us clarify that in the seismological community,
the terms “prediction” and “forecast” are often used inter-
changeably (Kagan, 1997; Ismail-Zadeh, 2013). When they
are distinguished, the term prediction emphasizes the issuing
of an alarm with high accuracy and reliability indicating the
time, location, and magnitude of the next large EQ (Geller
et al., 1997), whereas the term forecast is a statement about
the probability of EQs within the specified spatial–temporal
window (Ismail-Zadeh, 2013). Till this day, it is extremely
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difficult to make accurate and specific EQ predictions (Geller
et al., 1997). However, the forecasting of EQs is a far more
tractable task: a method that performs better than random
guesses (the null hypothesis) is recognized as having predic-
tive power or predictive skill (prediction and forecast used as
synonyms here) (Kagan, 1997). In this paper, we will also
use the two terms interchangeably.

If we categorize EQ forecasting methods according to
their timescales, we can organize them into three categories:
long-term (decades ahead), intermediate-term (a few years
ahead), and short-term (days or a few months ahead) (Pere-
san et al., 2005; Kanamori, 2003). EQ forecasting at different
timescales serves different purposes. For a region of interest,
long-term EQ forecasting aims to estimate the probabilities
of large EQs in the next decades or more. In most past stud-
ies, the primary input data were from the historical EQ cat-
alog, which allowed statistical modeling of the occurrence
times of large- and medium-sized EQs (Kagan and Jackson,
1994; Sykes, 1996; Papazachos et al., 1987; Papadimitriou,
1993; Papazachos et al., 1997), assuming that EQs’ occur-
rences in the same spatial area follow a Poisson process of
a relatively constant rate. One such example is the proba-
bilistic seismic hazard assessment (PSHA) first established
by Cornell in 1968 (Cornell, 1968). This became a popu-
lar method for long-term seismic hazard assessment imple-
mented in many countries (Tavakoli and Ghafory-Ashtiany,
1999; Petersen, 1996; Meletti et al., 2008; Vilanova and Fon-
seca, 2007; Nath and Thingbaijam, 2012; Wang et al., 2016).
In this method, we take into account both historical EQ cat-
alog information and ground motion characteristics for the
modeling of energy attenuation over spatial distances, thus
providing a map of seismic hazard rates that varies across
location for the next 50 years. Long-term EQ forecasting
such as PSHA can be valuable for location-specific seismic
risk evaluation, thereby providing guidelines or criteria for
local construction projects. For example, a building that is
expected to last 100 years must be able to withstand 10 large
EQs of the magnitude that occurs once every 10 years locally.
What long-term EQ forecasting cannot do is tell people how
to do things differently at any time.

For intermediate-term EQ forecasting, the aim is to detect
deviations of EQ rates from their long-term values to assess
increased probabilities of EQs within the next 1 to 10 years.
For example, if a region usually has a magnitude 6 EQ every
10 years and 15 years have passed without one, the region
would be in a state of increased probability. A famous exam-
ple of intermediate-term EQ forecasting is the M8 algorithm
(Kossobokov et al., 2002; Peresan et al., 2005; Keilis-Borok,
1996), developed by Healy et al. (1992). The M8 algorithm
used the EQ catalog as input and returned as output the time
of increased probability (TIP) for EQs of magnitude 7.5 and
above for the next 1 year. Another example is the CN algo-
rithm (Peresan et al., 2005; Keilis-Borok, 1996) developed
by Keilis-Borok and Rotwain (1990), which also took the EQ
catalog as input to produce as output the TIP for strong EQs

(defined specifically for different regions) within the next
half year to a few years. In the literature, we also found the
self-organizing spinodal (SOS) model (Chen, 2003; Rundle
et al., 2000), which used the increased activity of medium-
sized EQs as precursors to large EQs that could occur within
the next several years or decades. Finally, one of the more
successful methods at this timescale is pattern informatics
(Nanjo et al., 2006), which was demonstrated to be effective
at predicting M ≥ 5 EQs in Japan between 2000 and 2009.
Intermediate-term EQ forecasting can, for example, help lo-
cal authorities prioritize inspections and reinforcements of
old buildings over the construction of new ones.

Short-term EQ forecasting uses a variety of methods to
forecast the time, place, and magnitude of a specific large
EQ. Here we commonly find methods using the EQ catalog
as input data and apply machine learning approaches (Asim
et al., 2017; Reyes et al., 2013), as well as hidden Markov
model (HMM) approaches (Yip et al., 2018; Chambers et
al., 2012). For example, in Chambers et al. (2012) an HMM
was trained to track the waiting time between EQs with mag-
nitudes above 4 in southern California and western Nevada
(Yip et al., 2018), giving EQ forecasts for up to 10 d in the
future. Apart from using EQ catalog data, there are an in-
creasing variety of methods using other data inputs, such as
the widely used seismic electric signals (SESs) (Uyeda et al.,
2000; Varotsos et al., 2002, 2013, 2017; Varotsos and Lazari-
dou, 1991; Varotsos et al., 1993), to look for EQ precursors
in the form of abnormal changes to the geoelectric poten-
tial. In addition to looking for specific SES-type precursors,
we also found papers using methods such as artificial neu-
ral networks (ANNs) (Moustra et al., 2011), Fisher informa-
tion (Telesca et al., 2005a, 2009;), and multi-fractal analy-
sis (Telesca et al., 2005b) directly on geoelectric time series
(TS) data to make short-term EQ forecasting. Other data that
can be used include the combination of geoelectric and mag-
netic data (Kamiyama et al., 2016; Sarlis, 2018), GPS crustal
movements (Kamiyama et al., 2016; Wang and Bebbington,
2013), electromagnetics of the atmosphere (Hayakawa and
Hobara, 2010), and lithosphere dynamics (Shebalin et al.,
2006). Short-term EQ forecasting can guide emergency re-
sponses such as evacuations and preemptive relief efforts, al-
though it is usually not reliable enough based on our current
level of understanding.

Among all these precursors, our recent research interest
has been in the potential use of geoelectric TSs for EQ fore-
casting (Chen and Chen, 2016; Chen et al., 2020; Jiang et
al., 2020; Telesca et al., 2014; Chen et al., 2017). In 2016
and 2017, Chen and his colleagues (Chen and Chen, 2016;
Chen et al., 2017) analyzed the data of 20 geoelectric sta-
tions in Taiwan (Fig. 1) and studied the association between
skewness and kurtosis of the geoelectric data and ML ≥ 5
EQs, where ML is the Richter magnitude scale. Through sta-
tistical analyses, they found significant correlations between
geoelectric anomalies and these large EQs. They then devel-
oped an EQ forecasting algorithm named GEMSTIP to ex-
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Figure 1. Map of the spatial distributions of seismicity and geoelec-
tric stations (green triangles) in Taiwan. In this figure, past EQs with
ML ≥ 3 are shown as light blue dots and past EQs withML ≥ 6 are
shown as red stars.

tract TIPs for future EQs. TIPs were identified through differ-
ences in the distributions of skewness and kurtosis from those
found during normal periods. Moreover, Jiang et al. (2020)
investigated the geoelectric signals before, during, and after
EQs by the shifting correlation method and found that the
lateral and vertical electrical resistivity variation and subsur-
face conductors might amplify SESs, which agreed with the
findings by Sarlis et al. (1999) and Huang and Lin (2010).

Inspired by these findings, in this paper we wanted to take
a closer look at the relationship between the EQ times and
statistical indexes of geoelectric TSs, namely correlation (C),
variance (V ), skewness (S), and kurtosis (K). During ini-
tial explorations, we computed the TSs of these indexes (see
Sect. 2.2 for computation details) on geoelectric TSs given
by the 20 stations over the 7-year period of January 2012–
December 2018 (see Sect. 2.1 for data details). We then ag-
gregated the distribution of the indexes’ values within differ-
ent time-to-failure (TTF, i.e., time remaining to the next EQ)
intervals. In Fig. 2, we show the normalized frequency dis-
tributions of C, V , S, and K computed from the KAOH sta-
tion at different TTFs (using 0.9 d intervals) for ML ≥ 4 EQs
within 2◦ longitude and latitude of the KAOH station. In
this figure, we see bands of darker-colored pixels across the
TTFs. Specifically, for C, V , and S, there are sudden shifts
in the average position of the bands, suggesting that there
are two regimes (short TTFs and long TTFs) where the geo-
electric fields show qualitatively different behaviors. For all
statistical indexes, we find the darkest pixels concentrated in

the long-TTF regime, whereas in the short-TTF regime, the
pixels show a lower variability in their intensities. We suspect
that this second phenomenon is the result of fewer samples
at longer TTFs.

To overcome this problem, which is created by superim-
posing the index TSs of different lengths between EQs, we
decided to discover such regimes directly from the geoelec-
tric TSs by using HMMs. The HMM is well known for being
data-driven, enabling us to search for and use more general
statistical features beyond limited templates that we currently
know (Beyreuther and Wassermann, 2008). Additionally, its
explicit incorporation of the time dimension into the model is
a distinct advantage for providing holistic and time-sensitive
representations, especially in the application of EQ forecast-
ing (Beyreuther and Wassermann, 2008). In our HMM, we
defined two hidden states (HSs) as the high-level representa-
tions of geoelectricity, featuring unique distributions ofC, V ,
S, and K . Here we chose to use only two, instead of more,
HSs because two-state HMMs have already been success-
fully applied to model regimes with different EQ frequencies
using EQ catalogs as the only inputs (Yip et al., 2018; Cham-
bers et al., 2012). Thereafter, for each monitoring station, we
obtained the TS of posterior HS probability, or HS TS, using
the TSs of C, V , S, and K and the Baum–Welch algorithm
(BWA). We then partitioned the time periods under study ac-
cording to the HS TSs and investigated whether these HS TSs
that are obtained purely from geoelectric data can separate
time periods of high versus low EQ (ML ≥ 3) probabilities,
with high statistical confidence.

The goal of this investigation is to decide whether the hid-
den Markov modeling of geoelectric TSs could provide fea-
tures (i.e., HS TSs) of true forecasting skill for intermediate-
term EQ forecasting. Therefore, we are more concerned with
statistical significance than with evaluating the exact fore-
casting accuracy or with the forecasting of specific EQs. In
this regard, we also note that the same HMM approach de-
scribed in this paper can be applied to many other geophysi-
cal high-frequency time series data, such as geomagnetic or
GPS ground movement data, even though we only used geo-
electric data as the input of the HMM, to show that the un-
derlying seismic dynamics is indeed clearly separable into
distinct regimes of higher versus lower seismic activities (as
supported by Yip et al., 2018; Chambers et al., 2012).

For the sake of our readers, we organize our “Data and
methods” in Sect. 2, “Results and discussions” in Sect. 3,
and Conclusions in Sect. 4. In Sect. 2, we provide informa-
tion on the EQ catalog; the geoelectric TSs; and how we
pre-processed the latter and subsequently computed the in-
dex TSs of C, V , S, and K from them. We then explain how
an HMM and the Baum–Welch algorithm works, before ap-
plying them to our problem. We also explain why we did not
estimate individual HMMs from the index TSs of C, V , S,
andK but one HMM for each station from an observation TS
aggregating C, V , S, and K through k-means clustering. At
the end of this section, we present our procedures for quanti-
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Figure 2. Heatmaps of normalized probability density functions of C, V , S, and K at different times to failure (TTFs), for the east–west
component of the geoelectric TS. The TTFs are computed using ML ≥ 4 EQs within 2◦ longitude and latitude of the KAOH station.

fying how informative the HSs are against EQ activities, by
defining and analyzing EQ grid maps, EQ frequencies, and
EQ frequency ratios (RF). In Sect. 3, we first used theRF grid
map of 1 of the 20 stations to illustrate how we can compare
a discrimination power (D) grid map against 400 simulated
grid maps of D to obtain the discrimination reliability (RD)
grid map, which comprises cellular-level statistical signifi-
cances that the HSs are useful for EQ forecasting. We then
performed significance tests to verify that the HSs’ forecast-
ing power is also significant at the global level, using a metric
of the global confidence level (GCL) that we defined. To end
Sect. 3, we explored how robust the GCL values are across
the hyperparameter space and clarified how we chose the op-
timal hyperparameters for each station. Finally, we conclude
in Sect. 4.

2 Data and methods

2.1 Data description

The 1 Hz geoelectric TSs data used in this paper were pro-
vided by the 20 monitoring stations located across Taiwan
(see Fig. 1), which are collectively named the Geoelectric
Monitoring System (GEMS). The spacing between stations

is generally 50 km. The geoelectric data here are the self-
potential data, which are the natural electric potential differ-
ences in the earth, measured by dipoles placed 1–4 km apart
within each station. Each station can output two sets of high-
frequency geoelectric TSs, measuring separately the NS di-
rection and the EW direction. Depending on the spatial con-
straints of some stations, the azimuths of the dipoles might
deviate from the exact NS or EW directions by 10–40◦. For
the purpose of this study, we used the geoelectric TSs pro-
vided by GEMS with the same time span as the EQ cata-
log data, which is from January 2012 to December 2018. We
downsampled the data to 0.5 Hz and used these in subsequent
analyses.

The HMMs that we will show in Sect. 3 partitioned the
20 geoelectric TSs into two HSs, distinguished by the lo-
cal statistics of their geoelectric fields. We believe these HSs
can also exhibit different seismicity within their time dura-
tions. To check this, we used EQ catalog data compiled by
the Central Weather Bureau (CWB), in charge of monitor-
ing EQs in the region of Taiwan (Shin et al., 2013). The
CWB seismic network is highly dense and provides an abun-
dant set of waveform data. Due to the considerable EQs
recorded, the seismotectonics of Taiwan is well depicted,
showing the complicated subduction between the Philippine
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Sea and Eurasian plates (Kuo-Chen et al., 2012; Yi-Ben,
1986). Despite the dense seismic network, the EQ catalog
was shown to be incomplete at small magnitudes due to the
detection threshold of seismic instruments and the cover-
age of networks (Fischer and Bachura, 2014; Nanjo et al.,
2010; Rydelek and Sacks, 1989). In Taiwan, the complete-
ness magnitude (Mc), defined as the lowest magnitude above
which all EQs are reliably detected, is approximately be-
tween 2 and 3 (Chen et al., 2012; Mignan et al., 2011).
Chen et al. (2012) showed the temporal variation in Mc,
while Mignan et al. (2011) provided the spatial information
of that. In this study, for a conservative estimate, we took
the completeness magnitude of 3 and analyzed EQs with
ML ≥ 3, during the period from January 2012 to Decem-
ber 2018 in the area of 119.5–122.5◦ E and 21.5–25.5◦ N,
as shown in Fig. 1, in which the locations of strong events
withML ≥ 6 are marked. Some of these events were destruc-
tive. For instance, at 03:57 on 6 February 2016 (UTC+8),
an ML 6.6 EQ occurred in the southern part of Taiwan
(22.92◦ N, 120.54◦ E). This event struck at a depth of around
14.6 km (Chen et al., 2017; Lee et al., 2016; Pan et al., 2019).
Such a comparatively shallow depth caused more intensities
on the surface and resulted in widespread damage which in-
cluded 117 deaths and over 500 wounded.

In the latest update of the GEMSTIP model, Chen et
al. (2021) found that by applying a specific bandpass fil-
ter to the geoelectric TS, the model became better at antic-
ipating EQs using the skewness and kurtosis TSs. The fil-
ter they used is the third-order Butterworth bandpass filter
with lower and higher cutoff frequencies of f1 = 10−4.0 and
f2 = 10−1.75 Hz respectively. These lower and upper cutoff
frequencies were determined by Chen et al. (2021) to give
the optimal signal-to-noise ratio.

Similarly to the GEMSTIP model, our hidden Markov
modeling also searched for EQ-related information in skew-
ness and kurtosis TSs computed from the geoelectric TS; we
conveniently utilized the insight from Chen et al. (2021) and
applied the same Butterworth filter to our geoelectric TS data
before computing the index TSs. This filter was applied us-
ing the scipy.signal (v1.4.1) package in Python (v3.6.5), with
instructions from the SciPy Cookbook (2012), which also
demonstrated a clear working example of the Butterworth
bandpass filter that readers can refer to.

2.2 Computation of index TSs of C, V , S, and K

For each station, there are two geoelectric TSs (NS and EW)
of frequency 0.5 Hz. Each geoelectric TS will produce four
statistical index TSs (C, V , S,K). For each station, we there-
fore obtained up to eight index TSs, four for each direction
(NS and EW). Starting from the 0.5 Hz geoelectric TS, we
computed one index point for every non-overlapping time
window of length Lw geoelectric TS data points. Later in
Sect. 3.5, we will discuss in detail how we chose the opti-
mal Lw individually for each station in the parameter space

that we tested: {0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.25} (d).
As can be noticed from Fig. 12, 11 out of 20 stations’ op-
timal choice was Lw = 0.02 or Lw = 0.03 d, which we sup-
pose can be a good compromise between timely monitoring
of state shifts and updating at a comfortable frequency for the
human decision makers. Potential decisions that such an up-
date frequency may enable include the forward deployment
of relief materials such as backup generators, portable water
treatment units, tents, medical supplies, and refresher train-
ing of emergency response teams, as well as administrative
prioritizing of re-certification works for buildings and struc-
tures in regions where more EQs are expected soon.

Next, we present the definitions for each index.
Within each time window, let us write the geoelectric
field as {Xn}n=1,...,Lw . The correlation C that we used
in this paper is the lag-1 Pearson autocorrelation of
{Dn =Xn+1−Xn}n=1,...,Lw−1, which is the difference se-
quence of {Xn}n=1,...,Lw . Mathematically,

C ({Xn})= AC1({Dn})=
E
[
(Dn−µD)(Dn+1−µD)

]
σ 2

D
, (1)

where E is the expectation, µD is the mean of
{Dn}n=1,...,Lw−1, and σD is the standard deviation of
{Dn}n=1,...,Lw−1. The range of C is [−1,1], and C measures
how fast the TS relaxes back to the equilibrium. If C is close
to 1, X tends to increase or decrease persistently; if C is
around 0, X is equivalent to random walks; and if C is close
to −1, every increase in X would tend to be followed by a
similar decrease.

The variance V of {Xn}n=1,...,Lw is the sequence’s second
standard central moment. It is a positive number that mea-
sures how drastically the values in the sequence are different
from each other, with higher values indicating higher differ-
ence. It is defined as

V ({Xn})= E
[
(Xn−µX)

2
]
, (2)

where µX is the mean of {Xn}n=1,...,Lw . Additionally, we ob-
served astronomically extreme values in the V TSs for most
stations, which were caused by unknown technical errors,
and we therefore considered them outliers that have to be
removed for consistent data quality. We discuss how we re-
moved them in detail in Supplement Sect. S1. From here on-
wards, the V TSs will always refer to those after the outlier-
removal process.

The skewness S of {Xn}n=1,...,Lw , or the sequence’s third
standard central moment, is defined as

S ({Xn})= E

[(
Xn−µX

σX

)3
]
, (3)

where σX is the standard deviation of {Xn}n=1,...,Lw . It is a
real number measuring how asymmetric the distribution of
{Xn}n=1,...,Lw is about the mean. For a perfectly symmetric
distribution such as the normal distribution, the skewness is
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0. A positive skewness means the distribution has a longer
tail to the right, and a negative skewness means the distribu-
tion has a longer tail to the left.

The kurtosis K of {Xn}n=1,...,Lw , or the sequence’s fourth
standard central moment, is defined as

K ({Xn})= E

[(
Xn−µX

σX

)4
]
. (4)

It is a real number measuring how frequently extreme values
(values very far from the mean) appear in the distribution.
The higher the number, the more frequently extreme values
can be found. As a reference, the kurtosis of the normal dis-
tribution is K = 3. If K > 3, we say that the distribution is
leptokurtic, meaning the distribution has fatter tails and more
frequent extreme values compared to the normal distribution.
If K < 3, the distribution is said to be platykurtic, meaning
the distribution has thinner tails and extreme values appear
less frequently compared to the normal distribution.

2.3 Estimation of the HMM using the Baum–Welch
algorithm

A Markov model is a stochastic model that can be used to
describe a system whose future state st+1 is drawn from
a set of L states {Sl}l=1,...,L with probabilities pj←i =
P
(
st+1 = Sj |st = Si

)
conditioned by its current state st . The

probabilities pj←i can be organized into a transition matrix
A, where A(i,j)= pj←i . The HMM is an extension of the
Markov model, with the additional property that the system
state st is not explicitly known, hence the word “hidden” in
the name. Instead, what can be observed from an HMM at
any time t is an observable ot drawn from a size-Q observ-
able set

{
Oq
}
q=1,...,Q. Just as in a Markov model, the fu-

ture state st+1 of an HMM is drawn from the set {Sl}l=1,...,L
with probabilities pj←i (similarly conditioned by the current
state st ) taken from the transition matrix A. At time t , the ob-
servable ot is emitted with a probability P(ot =Oq |st = Sl)
that depends on which HS st = Sl the system is in. These
probabilities can be organized into an L×Q emission ma-
trix B, where B(l,k)= P(ot =Oq |st = Sl). Additionally,
we call the HS probability distributions at the initial time
π0 = [P (S1) ,P (S2) , . . .,P (SL) ]. With this, we have fully
specified the HMM: the sets of HSs {Sl}l=1,...,L and observa-
tions

{
Oq
}
q=1,...,Q as well as the model parameters that are

collectively called λ= (A,B,π0).
In common real-world applications of the HMM, the ques-

tion is to estimate the probability distributions of the HS TS
given the observation TS and the model parameter, namely
P(st = Sl |{ot }t=1,...,T λ). More often than not, the model pa-
rameter λ is unknown and has to be simultaneously estimated
as well. One of the most common ways to do this is the
Baum–Welch algorithm (BWA) (Zhang et al., 2014; Oudelha
and Ainon, 2010; Yang et al., 1995; Bilmes, 1998), which
belongs to the family of expectation maximization methods

(Bilmes, 1998). Starting from randomly initialized model pa-
rameters λ, the algorithm runs recursively to maximize the
likelihood of the model given the observation TS. When the
algorithm converges, we will obtain a set of estimated model
parameters λ̃=

(
Ã, B̃, π̃0

)
, as well as a posterior probability

P(st = Sl |{ot }t=1,...,T λ̃) TS. We include more details on the
BWA in Sect. 2.5. Additionally, for readers who want an in-
tuitive demonstration of how the HMM and BWA work, we
have included a simulation of a simple HMM and its BWA
application in Sect. S2.

HMMs are traditionally applied in fields such as speech
recognition (Palaz et al., 2019; Novoa et al., 2018; Chavan
and Sable, 2013; Abdel-Hamid and Jiang, 2013), bioinfor-
matics, and anomaly detection (Qiao et al., 2002; Joshi and
Phoha, 2005; Cho and Park, 2003). It has also been used for
short-term EQ forecasting, using observations from EQ cat-
alogs (Yip et al., 2018; Chambers et al., 2012; Ebel et al.,
2007), as well as GPS measurements of ground deformations
(Wang and Bebbington, 2013). To the best of our knowledge,
there is no past HMM study on geoelectric TSs for EQ fore-
casting. In this paper, we argue that the HMM is an objective
tool because the HSs were estimated only from the geoelec-
tric TSs and thereafter validated against the EQ catalog. We
believe this statistical procedure limits the bias that we could
introduce into our prediction model when we optimized the
model. This will be even clearer by the end of Sect. 2.5 where
we summarize the entire procedure.

2.4 Hidden Markov modeling and inputs to the BWA

In the context of this study, we assume for simplicity two
seismicity states of the earth crust beneath each station.
These are our HSs {S1, S2} since they cannot be directly ob-
served. What we can observe directly are the geoelectric TSs
for each station. Our goal is to reconstruct the HS TSs so that
the distributions of indexes (C, V , S, K) of the geoelectric
TSs in S1 and S2 are as different as possible. To do this, we
computed four index TSs each for NS and EW geoelectric
fields using the procedure described in Sect. 2.2 and orga-
nized them into a TS of 8-dimensional feature vectors F t =(
CNS,t ,VNS,t ,SNS,t , KNS,t ,CEW,t ,VEW,t ,SEW,t ,KEW,t

)
.

The values of each of the indexes are continuously
distributed, but the standard BWA requires discrete obser-
vations

{
Oq
}
q=1,...,Q as input. In this section, we discuss

possible ways to convert F t into discrete observations for
the BWA and why we chose one particular method for
implementation.

One way to do so would be to model each component of
F t as samples drawn from known distributions, such as a
normal distribution or a gamma distribution. Unfortunately,
as we can see from Fig. 3 (introduced in the next paragraph),
none of the known distributions fit the empirical data well.
Alternatively, we can discretize the components of F t by
binning them. In other words, we represent the distribution
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of each component with a histogram, with a specific choice
of the number of bins (50 for example). This will effec-
tively convert the continuous values of each component of
F t into discrete values, such as integer labels from 1 to 50
if we use 50 bins. Let us write the discretized F t as F t =(
CNS,t ,V NS,t ,SNS,t ,KNS,t ,CEW,t ,V EW,t ,SEW,t , KEW,t

)
.

If we do this for the TSs of individual components, such
as the TS of CNS,t , and use them as inputs for the BWA,
we will obtain one HS TS for each of the eight components.
In Fig. 3, we show (a) the estimated emission matrix B̃ in
Fig. 3a, c, e, and g and (b) the posterior probability TSs in
Fig. 3b, d, f, and h for four components: CNS,t , V NS,t , SNS,t ,
and KNS,t of the KAOH station. These posterior probability
TSs are different, which is not what we desire. Therefore,
instead of this, we would like to use all eight components in
F t as a single input to the BWA to obtain a single HS TS for
each station.

The BWA has no problem dealing with high-dimensional
problems, provided the inputs are discrete. However, this
method would work well only if the overall number of pos-
sible observations is small. If we use 50 bins for each of the
eight indexes, there would be D = 508

≈ 3.91× 1013 possi-
ble observations, meaning the emission matrix would be of
dimensions 3.91× 1013 by 2. Reducing the number of bins
to just 10 for each index, we still have D = 108 possible ob-
servations. This latter space is still too large for the BWA to
search through exhaustively in a reasonable amount of time,
even though we feel 10 bins for each index may already be
too coarse and likely to miss subtle details. Furthermore, with
so many possible observations, we expect the emission prob-
abilities to be significantly different from 0 only for a very
small subset of the D possible observations.

We do not know a priori what the elements of this very
small subset are. They may occur as isolated points in the
search space, or they may occur in groups of closely spaced
points. In the continuous feature space, each of these groups
of observations represents a cluster of similar feature vec-
tors. To determine the number of such clusters and where
they occur in the 8-dimensional continuous feature space,
we mapped similar feature vectors to the same label using
the k-means clustering algorithm (Gupta et al., 2010; Wen
et al., 2006; Dash et al., 2011), which is commonly used
for discretizing continuous vectors such as F t . We chose to
use the k-means clustering for discretizing F t because of its
low computational cost as well as its reliability in grouping
similar feature vectors in the feature space. In so doing, we
created a discrete feature space with reasonable size as high-
level labels of different geoelectric dynamics. The mathemat-
ical details of k-means clustering can be found in Sect. S3.

The indexes CNS,t , VNS,t , SNS,t , and KNS,t have highly
disparate dynamic ranges and should not be directly com-
bined into a feature vector. Therefore, before the clustering,
we first standardized our indexes by dividing them by their

respective standard deviations. The purpose of this step is to
ensure the weights associated with each index during the k-
means clustering are equal so as not to bias our search for
features with high dynamic range. Mathematically, the fea-
ture vector of standardized indexes at time t , F ′t , can be writ-
ten as

F ′t =

[
CNS,t

σ
(
CNS,t

) , VNS,t

σ
(
VNS,t

) , SNS,t

σ
(
SNS,t

) , KNS,t

σ
(
KNS,t

) ,
CEW,t

σ
(
CEW,t

) , VEW,t

σ
(
VEW,t

) , SEW,t

σ
(
SEW,t

) , KEW,t

σ
(
KEW,t

)] . (5)

We then implemented k-means clustering using the scikit-
learn package (v0.23.1) in Python (v3.6.5), on the sequence
of feature vectors F ′t covering the time period from Jan-
uary 2012 to December 2018. The choice of the number
of clusters Q was determined as part of the hyperparam-
eter optimization, described in Sect. 3.5. In this way, we
matched each F ′t to a discrete label ot →Oq (where q is
an integer from 1 to Q) to obtain the TS of discrete obser-
vations {o1,o2, . . .,ot , . . .,oT } for each station as its input to
the BWA.

2.5 Implementation of BWA

In this section, we describe how we implemented the BWA
to obtain one HS TS for each station. We start by describing
how we initialized and iterated the BWA, as well as how we
dealt with local optima in the BWA results by using multiple
initializations.

The first step of the BWA is to initialize the HMM parame-
ters (A,B,π). Since we had no prior knowledge on the model
parameters, we initialized parameters (A0,B0,π0) randomly.
After this, we iterated BWA’s expectation maximization steps
30 times, starting with iteration index i = 1. Each iteration
comprises the forward procedure, the backward procedure,
and the update. In Sect. S4, we present the mathematical de-
tails of how the forward procedure, the backward procedure,
and the update are performed.

As the iteration goes, the BWA improves the likeli-
hood of observing the input observation TS o1,o2, . . .,oT
given the model parameters (Ai,Bi,π i), which con-
verges when the improvements on the posterior probability
P(o1,o2, . . .,oT |(Ai,Bi,π i)) become minimal. In practice,
we found that 30 iterations were long enough for most mod-
els to converge. We therefore obtained the estimated model
parameters

(
Ã, B̃, π̃

)
= (A30,B30,π30), as well as the pos-

terior probability TS of P (st = Sl |o1,o2, . . .,oT , Ã, B̃, π̃) for
both HSs and all t values, which we write in short form as
P 1 = (P (s1 = S1) ,P (s2 = S1) , . . .,P (sT = S1)) and P 2 =

(P (s1 = S2) ,P (s2 = S2) , . . .,P (sT = S2)). Here, we noted
that BWA assigns the indexing of HSs randomly; therefore,
the S1 of one station is not guaranteed to be equivalent to the
S1 of another station.
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Figure 3. The output of BWA: the emission probability or the probability mass functions, as well as their posterior HS probability TSs, for
CNS,t (a, b), VNS,t (c, d), SNS,t (e, f), and KNS,t (g, h), using KAOH’s geoelectric TS data with 50 bins.

We cannot simply do the above BWA estimation once to
obtain

(
Ã, B̃, π̃

)
because the BWA converges to local op-

tima instead of the global optimum in the model parameter
space (Bilmes, 1998; Yang et al., 2017; Larue et al., 2011).
Also, the initial parameters have a significant influence on
the local optimum where the BWA converges. In order to ob-
tain a global optimum result within a reasonable computation
time, we ran 15 BWA estimations in parallel for each station,
with different random initial parameters. For each station, we
then chose the model with the highest model score given by
P
(
o1,o2, . . .,oT |

(
Ã, B̃, π̃

))
for subsequent analysis. Later

in Fig. 4a, we also show all 15 HMMs to demonstrate how
consistent the converged models are. We can write the pos-

terior probability TS of this model as P̃ 1 =

(
P (s1 = S1),

P (s2 = S1) , . . .,P (sT = S1) |o1,o2, . . .,oT ,
(

Ã, B̃, π̃
))

.

For each initial condition, the BWA randomly assigns
one HS to be S1 and the other to be S2. To show all
15 HMMs simultaneously in Fig. 4a, we need to standard-
ize S1 and S2 across all HMMs. For this purpose, we set P̃ 1
as the “standard”. For the remaining 14 posterior probabil-
ities

{
P i1
}
i=2,...,15, we checked their expected absolute dif-

ference, EAD=mean
(
|P̃ 1−P

i
1}
)

, from P̃ 1, whose value

ranges from 0 to 1. If EAD> 0.5, P i1 is more similar to P̃ 2

than to P̃ 1, and we proceed to swap the HS indexing for the
ith HMM by assigning P i1(new)≡ P i2 and P i2(new)≡ P i1.

Otherwise, P i1 corresponds to the same HS as P̃ 1, and we
leave its HS indexing unchanged. In this way, we standard-
ized all 15 models so that their P 1 can be visualized together
in Fig. 4a, with the P̃ 1 TSs sorted by their model scores
P
(
o1,o2, . . .,oT |

(
Ã, B̃, π̃

))
and the optimal model in the

first row. In Fig. 4b, we show the actual posterior probability
TS of this optimal model. The figures of 15 HMMs for all 20
stations are included in Sect. S5.

We summarize the procedures used to obtain P̃ 1, starting
from a pair of geoelectric TSs for each GEMS station in the
form of a flowchart in Fig. 5. It is noteworthy that the full
procedure contains essentially only two hyperparameters: Q
and Lw. The figures shown in the “Results and discussions”
section use the optimal hyperparameters, whose identifica-
tion procedure will be discussed in detail later in Sect. 3.5.
Additionally, for each station’s optimal HMM, we plotted the
distribution of indexes (C, V , S, K) at both HSs in Sect. S6.

2.6 EQ grid map, EQ frequency, and EQ frequency
ratio

Up to this point, we did not incorporate any EQ catalog in-
formation into P̃ 1 for each station. Unlike many past EQ
studies looking for specific precursory features within the
geoelectric data, we made no specific assumptions regard-
ing what these EQ precursors might look like. Instead, we let
the BWA search for specific precursory features within the
8-dimensional feature space.
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Figure 4. The step-by-step data visualization for CHCH. (a) A heatmap of the 15 HMMs’ posterior probability TSs for S1, sorted by model
score from highest to lowest. The posterior probabilities for the last 4 HMMs are messy because the BWA estimations do not converge;
(b) the optimal model’s posterior HS probability TS for S1 and P̃ 1 (obtained using optimal hyperparameters: [Lw,Q]= [0.02(d) ,30]

)
.

Figure 5. Flowchart summarizing the procedures of obtaining the optimal posterior probability TS P̃ 1 from the data of one GEMS station.

After the hidden Markov modeling, we then checked lo-
cally whether S1 and S2 would effectively partition time peri-
ods with significantly lower EQ probabilities from those with
significantly higher EQ probabilities. We think of one HS as
a passive state (with significantly lower EQ probabilities) and
the other HS as an active state (with significantly higher EQ
probabilities), but we cannot call the former S1 and the lat-
ter S2 because we have not yet standardized these HS labels
across the 20 stations. To do so, we need to match the HS
TS of each station to the EQ catalog to determine the EQ
frequencies of S1 and S2 for this station and use S1 and S2
as the HS labels of the active and passive states respectively
(relabeling when necessary). In the remainder of this section,
we describe in detail how this is done.

For each GEMS station we started from P̃ 1 and classified
time periods across the 7 years as belonging to two sets T1
and T2. The time point ti was assigned to T1 if P̃ti (S1) > 0.5
and to T2 if P̃ti (S2) > 0.5. After this is done, we checked
how EQs are distributed between T1 and T2 for different re-
gions across Taiwan. For this task, we first made a 16-by-16
grid map of Taiwan so that EQs within the same grid cell
(ix, iy), for ix and iy in {0,1, . . .,15}, are grouped together
(see Fig. 6).

For each grid cell (ix, iy), we defined the EQ frequencies
for HSs S1 and S2 as

FEQ,1 =
N1

|T1|
,FEQ,2 =

N2

|T2|
, (6)
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Figure 6. A sample EQ grid map with 16 by 16 divisions, in which each cell measures 0.3330◦ (longitude) by 0.3418◦ (latitude). All EQs
of ML ≥ 3 are labeled with blue circles, with the radius of each circle being proportional to the natural exponential of the EQ’s magnitude.

whereN1 is the number of EQs occurring within T1,N2 is the
number of EQs occurring within T2, |T1| is the total duration
of T1 time periods, and |T2| is the total duration of T2 time
periods. From Fig. 6, we see that the spatial distribution of
EQs is highly heterogeneous, so we may find a grid cell with
about 10 EQs but also another grid cell with about 1000 EQs.
This tells us that we should not directly compare the EQ fre-
quencies but should instead compare the EQ frequency ratio,
defined as

RF =
FEQ,1

FEQ,1+FEQ,2
. (7)

For any cell containing at least one EQ, the range of its RF
is [0,1]. Intuitively, any cell with RF < 0.5 is a region hav-
ing lower EQ frequency in S1 compared to S2; and any cell

with RF > 0.5 is a region having a higher EQ frequency in
S1 compared to S2. For example, for a cell with RF = 0.2,
FEQ,1 is only one-quarter of FEQ,2. The RF value quantifies
how one HS has a higher or lower EQ frequency than the
other. In Sect. 3, we will present how we deep dived into the
spatial–temporal correlations between HS TSs (P̃ 1) and EQ
activities for all 20 stations, starting from 20 grid maps of RF
values.

3 Results and discussions

In this section, we present the results obtained for all 20 sta-
tions, as well as additional treatments that we felt were neces-
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sary to investigate whether the HS TSs have significant fore-
casting power for EQs.

3.1 EQ frequency ratio (RF) grid maps

Once we obtained the P̃ 1 TS for each station, the natural
first step of our analysis was to examine the RF values for all
cells in the 16-by-16 grid map. We show this procedure for
the CHCH station in Fig. 7, where we visualize the grid maps
for N1 and N2 in Fig. 7a and b respectively to clearly show
how many EQs occurred during T1 and T2. The resulting RF
grid map is shown in Fig. 7c, where there are cells with val-
ues close to 0.5 (white-color cells) and cells with values far
from 0.5 (red for close to 0, green for close to 1). White-color
cells are regions whose EQ activities are weakly correlated
with the HSs since the time periods of S1 and S2 are not very
different in terms of EQ frequency; whereas red/green cells
are regions with significantly lower/higher EQ frequencies in
S1.

As can be seen in Fig. 7c, for different regions the HS with
higher EQ activities can be either S1 or S2. This is true not
only for the CHCH station but also for all 20 stations, whose
RF grid maps are shown in Fig. 8. Although there is no con-
sistent pattern of any state corresponding to higher EQ activ-
ities globally, we see in Fig. 8 that there are regions whose
RF values are far from 0.5 across many stations. This means
that statistically speaking, one of the HSs has higher EQ ac-
tivities than the other. In fact, if the active HS has a lot more
EQs than the passive HS, it is also likely that the active HS
covers most of the larger EQs (e.g., M > 5), which is a good
attribute for potential EQ forecasting applications. This phe-
nomenon is shown in Sect. S7, where we visualized the EQ
frequency distributions across different magnitudes for both
HSs for three selected cells with the most EQ events.

All in all, the findings in this section are important, but we
cannot directly decide whether S1 or S2 is the proxy for in-
creased EQ probabilities because neither can be associated
consistently with the active or the passive state. Instead, we
should understand S1 and S2 as two high-level, fuzzy labels
for tectonic dynamics related to EQ activities in different re-
gions. There can be elements such as rock and soil forma-
tions, the underground water system, and fault lines, forming
a complex dynamical system that influences where and when
EQs become active. Concrete mapping between EQ activi-
ties and specific elements of the complex dynamical system
would be very difficult, as this would involve high-resolution
subterranean surveys. Nevertheless, we can still measure how
well S1 and S2 can partition the time periods so that one HS
can have significantly more EQs than the other. To show this
more clearly, we created grid maps of discrimination power
D and present them in the next section.

3.2 Discrimination power (D) grid maps

We defined the discrimination power D for each cell as

D = |RF− 0.5| . (8)

The value ofD ranges from 0 to 0.5, with 0.5 being the most
discriminative since all EQs are found in one HS and 0 being
the least discriminative since EQ frequencies are identical
between the two HSs. We show the grid maps of D for 20
stations in Fig. 9, which are easier to interpret compared to
the grid maps in Fig. 8 where we had to use two different col-
ors. Intuitively, for a region with D = 0.25 (not uncommon),
one of its HSs would have an EQ frequency 3 times that of
the other HS. It can be noted that cells around the edge of the
map tend to have very high D values because there are very
few EQ events in these cells. This is not a problem as we will
take the number of EQs into account later in Sect. 3.3.

In some cells, we find D values close to 0.5, which seems
to suggest that the seismicity associated with S1 is very dif-
ferent from that associated with S2. However, looking at
Fig. 9, we see large variations inD values across the cells and
more importantly among some neighboring cells. We there-
fore wonder whether regions with high D values are statis-
tically significant or the products of random temporal clus-
tering of EQs (Dieterich, 1994; Frohlich, 1987; Holbrook et
al., 2006; Batac and Kantz, 2014). For example, if all EQs
in a cell occurred within a single day in the 7-year period,
any random assignment of HSs would produce the highest
D value of 0.5. To address this concern, we investigated the
significance of the grid maps of D through statistical tests in
the next section.

3.3 Cellular-level significance tests of the forecasting
power

Since we had the optimal HMMs for the 20 stations, we can
test cellular statistical significance levels indicating that their
HSs can indeed separate time periods of higher/lower EQ
probabilities, using D grid maps shown in Fig. 9. Specif-
ically, for each grid cell and an empirical HS TS we car-
ried out statistical hypothesis testing using the following null
hypothesis: any random HS TS would achieve the same or
higher performance (in terms of the D value). To create
random HS TSs for the hypothesis testing, we chose to di-
rectly simulate the HMM using the same model parameters(

Ã, B̃, π̃
)

as the empirical HMM of the corresponding sta-
tion. For each hypothesis test of an empirical HS TS (actual
HS TS obtained for each station), we created 400 simulated
HS TSs, which were then used to create 400 grid maps of the
discrimination power D. In Fig. 10, we show the empirical
HS TSs alongside a random sample of 10 simulated HS TSs
for YULI, SHRL, CHCH, and SIHU to illustrate the simu-
lated counterparts. After this, in each cell, we had one em-
pirical value of D that we can compare against a distribution
of 400 simulated values of D. This allows us to compute for
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Figure 7. The step-by-step data visualization for CHCH, showing (a) the grid map with the number of ML ≥ 3 EQs during S1’s time
periods, N1; (b) the grid map with the number of ML ≥ 3 EQs during S2’s time periods, N2; and (c) the grid map with the EQ frequency
ratio, RF (×0.01). Results were obtained using optimal hyperparameters: [Lw,Q]= [0.02 (d) ,30].

each cell the probability that its empirical D value is higher
than its simulated counterparts. We named this quantity the
discrimination reliability RD, defined for each cell in the grid
map as

RD =
(no. simulated D < empiricalD)

400
. (9)

In the language of statistical hypothesis testing, the p value
for the test is given by p = 1−RD. The value of RD ranges
from 0 to 1. If RD is close to 1, we are confident that the
discrimination power of the empirical HS TS is statistically
significantly high; otherwise, we have no such confidence.

In Fig. 11, we show the grid maps of RD values (as per-
centages) for all 20 stations. Dark-red cells are regions with
RD close to 1, and white and pink cells are regions with RD
close to 0. From these grid maps, we can better appreciate
the utility of HS TSs across the grid map since the RD value
is a statistical significance measure of the HS–EQ correla-
tion, unlike the discrimination power D. To explain this, let
us take the example of LIOQ (upper left of Fig. 11), whose
physical location is marked by the blue star within a dark-red
grid cell of RD = 0.992. This means that the empirical HS
TS performs better than random guesses (i.e., simulated HS
TSs) at separating time periods of low/high EQ frequencies,
with a statistical significance of p = 0.008. This means that
it is improbable for a simulated HS TS to have such a highD,
and therefore the empirical HS TS is unlikely to be a product
of random chance. This is a very strong demonstration of the
mutual information between the HS TS obtained from geo-
electric TS and the EQ catalog that was not used to train the
HMM.

In the proximity of the LIOQ station located within 22.55–
23.58◦ N, we can see a clear pattern of cells with RD ≥ 0.9
(dark-red color), while RD ≥ 0.9 occasionally for most cells
outside this general region. This pattern suggests the geo-
electric information from LIOQ is approximately local. This

is consistent with the logical requirement for a direct/indirect
structural relation between LIOQ and region X, such as being
close to the same subterranean fault line, for the information
at LIOQ to be useful for region X. As a corollary, information
given by LIOQ is less likely to be useful for faraway regions
as they are less likely to have such structural relations with
LIOQ. In application scenarios, this means that the state of
EQ probabilities of region X can be estimated using stations
closer to the region. Last but not least, it is also worth men-
tioning that most cells at the edge of the map seldom have
high RD values. This is consistent with the fact that these
cells typically have very few EQ events to provide high sta-
tistical significance.

Based on our discoveries regarding the HS–EQ correla-
tions so far, we claim that the HS TSs can provide usable EQ
forecasts for real-world applications. We understand that for
all EQ forecasting, whether short-, medium-, or long-term,
we must specify (a) a time window, (b) a space window, and
(c) the magnitudes of EQs expected. We shall next explain
how the HS TSs can be useful for EQ forecasting from these
three aspects. (a) Let us consider an HMM that started out in
the passive state, where EQs of all magnitudes are less fre-
quent compared with the active state. In most stations that
we tested, we noticed that once an active state has persisted
for a few weeks, it is unlikely to switch back to the passive
state until a few months have elapsed. This minimum life-
time found in historical data can be used as a prediction time
window. Based on this timescale, we can say that our HMM
can be useful for short- to medium-term EQ forecasting, de-
pending on the station of interest. (b) Next, let us consider
the grid cells covering Taiwan. For a given grid cell, it may
be satisfactory (RD being high enough) for a list of stations.
The more stations in this list becoming persistently active,
the more likely large EQs within this grid cell should occur.
This is the spatial window we work with for making predic-
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Figure 8. The grid maps of EQ frequency ratio RF(×0.01) for 20 stations (obtained using optimal hyperparameters individually specified
for each station in Fig. 12).
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Figure 9. The grid map of discrimination power D(×0.01) for 20 stations (obtained using optimal hyperparameters individually specified
for each station in Fig. 12).
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Figure 10. The empirical HS TS and 10 simulated HS TSs, for the stations (a) YULI, (b) SHRL, (c) CHCH, and (d) SIHU. The simulated
HS TSs have HS transition frequencies and HS total durations similar to the empirical HS TS but have none of the temporal correlations in
the empirical HS TS. Results are obtained using optimal hyperparameters individually specified for each station in Fig. 12.

tions. (c) Finally, let us describe how our HMM can help in
assessing the magnitudes of EQs expected. To answer this
question, we can examine the distribution of EQ frequencies
across magnitudes 3.0 to 6.0 for both active states and pas-
sive states (in Sect. S7). It turns out that for a given grid cell
with high RD, the active state has proportionally more EQs
than the passive state across all magnitudes. Therefore, we
expect EQs of all magnitudes to be more frequent in a posi-
tive prediction.

For grid cells with high RD, the corresponding HS TS
alone is sufficient to make intermediate-term EQ forecasts.
However, we also have grid cells where none of the 20 sta-
tions provide a sufficiently high RD value for intermediate-
term EQ forecasting on their own. These HS TSs could still
be useful if we combine all 20 HS TSs as input features
for higher-level forecasting algorithms trained individually
for each grid cell. For example, for any region (grid cell),
if we want to decide whether it currently belongs to the ac-
tive regime or the passive regime, an algorithm uses the in-
put from all 20 stations to decide the “local” HS for the given
grid cell. This high-level algorithm can for example comprise
weight-based model averaging (Marzocchi et al., 2012) or
decision trees (Asim et al., 2016). Additionally, the value of
RD can be helpful for the algorithm to decide how to weigh

the information given by all 20 stations. For example, we can
consider only stations with RD ≥ RD_min at the given grid
cell. The user-defined threshold RD_min can take on constant
values (e.g., 0.9) across the grid map or be location specific,
such as being lower (e.g., 0.8) for grid cells where few of the
20 stations have RD ≥ 0.9. We hope to explore this in future
work.

Due to the nature of our HSs, we cannot use them to
forecast specific EQs or issue evacuation alarms. What the
HSs can do, however, is to provide information with fore-
casting skill to decision makers, in regions where the HS
switched from the passive state to the active state convinc-
ingly (i.e., the observed active state is persistent and not a
temporary fluctuation), to take courses of action that can
lower the potential damage with minimal costs. For exam-
ple, in the passive state, the building inspection authority can
prioritize inspection and the issuing of safety permits to new
projects over re-inspections of old buildings. With the arrival
of an active state that might last a few months to a few years,
local authorities would have the incentive to clear up pend-
ing re-inspection works so that fewer old buildings are ex-
posed to potential EQ damage. Other than the re-inspection
of old buildings, local authorities could also increase the fre-
quency of safety education and drills to vulnerable groups
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Figure 11. The grid map of discrimination reliability RD(×0.01) for 20 stations (obtained using optimal hyperparameters individually
specified for each station in Fig. 12).
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such as students and construction workers to reduce poten-
tial injuries or fatalities due to panic or lack of understanding.
Additionally, disaster relief services may use the HS’s infor-
mation to re-deploy the stockpile of relief materials, such as
food, clothing, tents, and first-aid kits, whenever necessary.
In doing so, the stockpile of relief materials can be brought
closer to high-risk regions within a convincing active state to
be distributed to victims more cost-effectively after a major
EQ.

3.4 Global-level significance tests of the forecasting
power

From Fig. 11 alone, we have demonstrated the HS TSs are
able to separate time periods of low/high EQ probabilities for
regions (cells in the grid map) with high RD values. While
the forecasting power of HS TSs in each of these cells is
statistically significant, the more critical among us may won-
der whether some of these cells can be significant purely by
chance, even though there is in reality no persistent correla-
tion between EQs and HSs. For example, any simulated HS
TS in Fig. 10 would have at least a few cells with high RD
values. Therefore, in this next section, we will answer the
question of whether these HS TSs indeed contain useful in-
formation about EQs or whether the number of “significant”
cells can be explained by a random null model where the EQs
and HSs are mutually uninformative because we test a large
number of cells assuming that they are statistically indepen-
dent.

In order to answer this question, we need to define a per-
formance metric that can quantify the performance of each
station with a single value, instead of a grid map of RD val-
ues. We start by assuming that all stations have zero fore-
casting skill, but as a result of our statistical test, some cells
may still end up with high RD by chance. A truly informa-
tive station should have significantly more cells with highRD
than random guesses. Taking the number of EQs into consid-
eration, we further propose that a truly informative station
should have significantly higher EQ counts located in high-
performing cells. On the grid map, let us define cells with
RD ≥ RD_min as satisfactory cells and the rest as unsatisfac-
tory cells, where RD_min is the user-defined threshold that
determines how high the RD should be in order to be consid-
ered “high-performing”. As mentioned earlier, it is possible
to work out schemes that allow for a regionally acceptable
RD_min. Here for simplicity let us consider a scheme with a
uniform RD_min across all cells in the grid map. With this set-
ting we can proceed to define the single-value performance
metric for each station, as the ratio of EQs in satisfactory
cells, or REQS, as

REQS =

∑
satisfactory cellsNEQ∑

all cellsNEQ
, (10)

where NEQ is the number of EQs in each cell. This ratio of
EQs in satisfactory cells takes on values 0≤ REQS ≤ 1. Intu-

itively, if REQS = 0.4, it means that given the RD_min value,
40% of all EQs are located within satisfactory cells and are
therefore “forecasted” by the station to the level required by
the user (i.e., RD_min). Therefore, to show that a station has
more forecasting power than random guesses, we proceed to
test a given station against the null hypothesis that a random
guess (simulated HS TS) can have the same REQS as the em-
pirical HS TS or higher.

We carried out this hypothesis test station by station by
first computing the REQS values of a station’s empirical HS
TS as well as of 400 HS TSs simulated using the HMM pa-
rameters for the given station. We then defined the global
confidence level as

GCL=
(no. simulated REQS < empiricalREQS)

400
. (11)

Similarly to the p value for the cellular-level hypothesis test,
the p value for this global-level hypothesis test is given by
p = 1−GCL, where the GCL range is [0,1], and gives the
probability that the empirical HS TSs have higher REQS val-
ues than their simulated counterparts. For example, if a sta-
tion has GCL= 0.99, we can say that given the specified
RD_min, we are 99 % confident that the empirical HS TS
yields a higher REQS than its simulated counterparts.

In Fig. 12, we show the results of our global-level signifi-
cance tests, for a choice of RD_min = 0.95, in the form of his-
tograms of the 400 simulated REQS values compared against
the empirical REQS values. Except for the LIOQ and LISH
stations, we can see from Fig. 12 that all the other stations
have GCL values close to 1. This tells us that the empiri-
cal REQS values of the 18 stations are statistically significant.
We also observed that forRD_min = 0.95, the simulatedREQS
values are mostly around (or below) 0.05, meaning that only
5 % of EQs are located in satisfactory cells by chance. In con-
trast, the empirical REQS values are mostly above 0.2, except
for TOCH, LIOQ, PULI, HERM, and LISH. These findings
suggest the HS TSs’ EQ forecasting utility to be significant
at the global level.

Last but not least, the histograms for each station in Fig. 12
are created with individually optimized hyperparameters,
namelyLw (length of time window to compute indexesC, V ,
S, andK , in days) andQ (number of clusters for the k-means
clustering). The optimal hyperparameter values for each sta-
tion are indicated in the titles for each station. Let us discuss
the details of this optimization process in the next section.

3.5 Significance levels across the hyperparameter space

Typically, a forecasting model’s performance may be sensi-
tive to our choice of hyperparameters. If possible, we would
like to choose hyperparameters that make the model the
most predictive. If there were too many hyperparameters, this
optimization would be challenging in the high-dimensional
search space. Fortunately, there are only two hyperparam-
eters needed to obtain the HS TS: Lw and Q. In this sec-
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Figure 12. Histograms (blue) of 400 simulated REQS values compared against the empirical REQS (vertical red line) for 20 stations and
RD_min = 0.95, with the GCL values in the legends. The hyperparameters of Lw and Q optimized for each station are shown in each
subplot’s titles.

tion, we show how the model performance (GCL) will vary
across the tested hyperparameter space, as well as how we
chose the hyperparameters [Lw,Q], for each station. Due to
the high computational cost to test each combination of Lw
and Q (about 40 min per station on a desktop with 4 GHz
quad-core i7 processors, 16 GB of RAM, running macOS
Mojave 10.14.6), we performed a coarse grid search over
28 points in the parameter space, consisting of seven differ-
ent Lw values: {0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.25} d (or
{28.8, 43.2, 57.6, 72, 144, 288, 360} min) and four differ-
ent Q values {30, 40, 60, 80}. We decided on this search
space based on our experience during the model develop-
ment stage. For real-world applications, where more compu-
tational resources can be invested, this hyperparameter opti-
mization can be carried out over a larger and finer grid, in
which case better results can be expected.

For each choice of station and hyperparameter, we fol-
lowed the same procedure of computing 1+ 400 REQS val-
ues, as well as the resulting GCL value. In Figs. 13 and 14,
we show the 20 heatmaps of REQS and GCL across the hy-

perparameter space respectively for RD_min = 0.95. The re-
sults shown in Fig. 14 are more intuitive, where we found
that for many stations, the GCL values approach 1 across
broad regions of the hyperparameter space. This can for ex-
ample be the full hyperparameter space for the YULI station
or a patch within the hyperparameter space for the KUOL
station. There is just one station (LISH) with poor GCL val-
ues everywhere in the hyperparameter space, indicating that
there might be exclusive factors that severely limit LISH’s
forecasting power. For the other 19 stations, the GCL val-
ues are close to 1 across either a large area of the parame-
ter space or almost the entire parameter space (e.g., YULI,
WANL, ENAN, DABA). This result is compelling and is ex-
actly what we needed for our goal: to demonstrate the fore-
casting skill of the HS TS, which does not depend on highly
optimized hyperparameters but is valid over a broad range of
hyperparameters.

To wrap up this section, let us describe how to select the
optimal hyperparameter for each station. We did this in two
steps: first, we selected the hyperparameters with the high-
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Figure 13. Heatmaps of REQS values for all 20 stations across tested hyperparameter space, given RD_min = 0.95.

Figure 14. Heatmaps of GCL values for all 20 stations across tested hyperparameter space, given RD_min = 0.95.
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est GCL values (1 for many stations); next, in case of ties,
we chose the hyperparameter with the highest REQS as the
winner. For example, for the WANL station in Fig. 14, there
are many cells with GCL= 1. We therefore proceeded to
check the heatmap for WANL in Fig. 13 and identified the
hyperparameter combination Lw = 0.03 andQ= 80 as opti-
mal since it has the highest REQS value. Using this selection
procedure, we identified the optimal hyperparameter for each
station and used these individually optimal hyperparameters
to create Figs. 7 to 12. This selection procedure could also
be adapted for real-world applications, when more historical
data and computational power are available, to provide even
better model performances.

4 Conclusions

EQ forecasting is an important research topic because of the
potential devastation EQs can cause. As has been pointed out
by many past studies, there is a correlation between features
within geoelectric TSs and large individual EQs. In those
studies, different features of geoelectric TSs were explored
for their use of EQ forecasting, among which the GEMSTIP
model was the first one to directly use statistic index TSs of
geoelectric TSs to produce TIPs for EQ forecasting. Inspired
by this, we took a second look at the relationship between
these statistic indexes and the timing of EQs and found that
there is an abrupt shift in the indexes’ distribution along the
TTF axis. This suggests that there are at least two distinct
geoelectric regimes, which can be modeled and identified us-
ing a two-state HMM. This finding is further backed by the
knowledge that there can be drastic tectonic configuration
changes before and after a large EQ, one important aspect
of which being the telluric changes identified in the region
around the epicenter of the EQ (Sornette and Sornette, 1990;
Tong-En et al., 1999; Orihara et al., 2012; Kinoshita et al.,
1989; Nomikos et al., 1997). Therefore, should there be two
higher-level tectonic regimes featuring higher/lower EQ fre-
quencies, we would expect to also find two matching geo-
electric regimes with contrasting statistical properties, which
can be of good utility for EQ forecasting.

Specifically, we modeled the earth crust system as having
two HSs identifiable with distinctive geoelectric features en-
coded by eight index TSs from each station. To obtain the
HMM for each station, we needed to run the BWA, which is
most convenient to use with a discrete observation TS input.
Therefore, we used k-means clustering to convert the contin-
uous TS of 8-dimensional index vectors into a discrete ob-
servation TS and subsequently obtained a converged HMM
for each station. We then investigated whether these HS TSs
provide informative partitions of EQs, i.e., whether one of the
HSs can be interpreted as a passive state with less frequent
EQs and the other one as an active state with more frequent
EQs. For this task, we defined the EQ frequency ratio (RF),
which is the frequency of EQs in one of the HSs divided

by the total frequency of the EQs. Using RF we further de-
fined the discrimination power (D) to measure how different
one HS is from the other HS in terms of the EQ frequency.
We then plotted 16-by-16 grid maps of RF and D for all 20
stations and tested the statistical significance of D in each
cell by comparing the empirical value against the distribu-
tion ofD from 400 simulated HS TSs to end up with the grid
maps of discrimination reliability (RD) for all 20 stations.
To further investigate the statistical significance level at the
global scale, we defined REQS to measure the percentage of
total EQs located within satisfactory cells, i.e., cells having
RD ≥ RD_min for a user-specified RD_min value. This RD_min
value can be easily customized for different cells, but in this
paper, we used a constant RD_min value across the grid map
for demonstration. By comparing the REQS value of the em-
pirical model against those of 400 simulated models, we ob-
tained one global significance value for each station, namely
the global confidence level (GCL). This tells us how confi-
dent we can be that information contained in the empirical
HS TSs can be used for EQ forecasting.

Finally, we showed how we optimized the GCL values
through a grid search in the 2-dimensional hyperparameter
space and obtained the optimal combination of Lw and Q
individually for each station. As a result, among the 20 sta-
tions with optimized hyperparameters, there are 19 stations
with GCL> 0.95, 15 of which have GCL> 0.99. Addition-
ally, the confidence levels are also robust across the hyper-
parameter space for most stations. Based on these positive
results, the hidden Markov modeling of the index TSs com-
puted from geoelectric TSs is indeed a viable way to extract
information that can be useful for EQ forecasting.

To the best of our knowledge, while there have been
previous applications of HMMs for earthquake forecasting,
this paper is the first to demonstrate the ability to do so
with statistical confidence. As discussed in greater detail in
Sect. 3.3, in real-world scenarios, the HS TSs can be use-
ful for intermediate-term EQ forecasting either directly (for
high-RD cells) or as input features for higher-level algo-
rithms that take information from all 20 stations (for low-RD
cells). Beyond our demonstration of extracting EQ-related
information from geoelectric TSs, the HMM approach de-
scribed in this paper can also be explored on other high-
frequency geophysical data, such as those from geomagnetic,
geochemical, hydrological, and GPS measurements, for EQ
forecasting.

At this point, we would like to address the issue of out-
of-sample testing (or cross-validation) to support the valid-
ity of our model. There are two ways to do this: (1) split a
long time series into a training data set to calibrate the model
and a testing data set to validate the model and (2) use what-
ever time series data are available to calibrate the model be-
fore collecting more data to validate the model. If the model
is statistically stationary (its parameters do not change with
time), both approaches are acceptable. However, many would
agree that an out-of-sample test with freshly collected data
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(approach 2) is more impressive, especially if it is performed
in real time. We would certainly like to try this and are writ-
ing a grant application to fund such a validation study. For
this paper, however, we were not even able to use approach 1
because our geoelectric time series are not long enough. This
is especially so if we require that (a) the validation data are
always temporally after the training data and (b) the vali-
dation data are also intermediate term for intermediate-term
EQ forecasting. These two requirements cannot be fulfilled
using our limited 7-year data if we want to have a signifi-
cant number of validations (e.g., 10 times) to produce confi-
dent claims. Therefore, in this paper, we limited our scope to
demonstrating that our model has forecasting skill, without
quantifying its exact forecasting accuracy. We argue that we
have indeed achieved this, without the use of out-of-sample
testing, because in Sect. 3.5, we showed the forecasting skill
is statistically significant regardless of the choice of the hy-
perparameters, for 19 out of the 20 stations that we tested.
Furthermore, the statistical hypothesis test has the advantage
of giving rigorous p values with moderate computation cost,
through simulating the HMM for multiple null-hypothesis
tests.
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